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Weakly supervised keypoint detection
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Abstract— Keypoint detection using convolutional neural net-
works (CNNs) requires a large amount of annotations that
are time consuming and labor intensive. In this work, it is
shown that CNNs could merely rely on class labels to categorize
images and locate the keypoints simultaneously. Specifically,
keypoints are detected in a multiscale framework based on the
relevance of features and high activations. The performance of
the proposed pipeline is analyzed qualitatively.

I. INTRODUCTION

Keypoint detection is a critical step in semantic scene un-
derstanding for autonomous driving, such as object detection
and 3D reconstruction of cars. Hand-crafted keypoint detec-
tors often lack the ability to maintain semantic consistency,
whereas convolutional neural networks (CNNs) that have
gained popularity for various recognition tasks could tackle
semantic keypoint detection better. However, training CNNs
usually require a massive amount of labeled data with high
diversity to prevent over-fitting, and it is quite challenging
to ensure the annotated keypoints are semantically consistent
in different object instances.

Manual keypoint annotation suffers from several issues.
First and foremost, the annotation process is quite time
consuming and labor intensive, as an object often possesses
many keypoints. Secondly, the labeling is subjective and the
position of the keypoints are not well defined. Thirdly, it
is problematic to ensure that the keypoints are semantically
consistent for varied instances in a class. As a result, the
number of annotated keypoints is often limited. For instance,
there are only 14 keypoints for each car image in the
popular PASCAL VOC dataset. Although it is possible to
take advantage of 3D CAD models in ShapeNet to generate
overfit-resistant training set for viewpoint prediction [1],
how to define and locate the keypoints on those models for
different object instances in a semantically consistent way
still remains a challenging issue. A question arises naturally:
is it really necessary to label each keypoint for CNNs?

In this work, it is found that keypoint annotations may not
be necessary, as class labels could provide weak supervision
that is sufficient for CNNs to figure out the locations of the
important features in the image that are vital for accurate
classification. The proposed pipeline is shown in Fig. 1.
A model pretrained on classification task is used to detect
the keypoints, which correspond to the features that are
most relevant to the activations. A multiscale framework is
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Fig. 1. Overview of weakly supervised keypoint detection pipeline. The
input image is fed to a pretrained network on classification, with an occluder
to obtain the coarse scale heatmap, and then guided backpropagation is
performed to get the fine scale heatmap. The results are combined to produce
the log-likelihood distribution for keypoints.

formulated, in which the likelihoods of keypoints at coarse
scale and fine scale are combined. The features with highest
probability are refined with sub-pixel accuracy to locate
the keypoints. To the best of our knowledge, the method
proposed in this paper is the first work on weakly supervised
keypoint detection, which neither requires keypoint annota-
tions for training nor ground-truth class labels during testing.

The rest of the paper is organized as follows: Section
II reviews the previous works; Section III illustrates the
pipeline of weakly supervised keypoint detection, and Sec-
tion IV presents qualitative analysis; Section V contains the
discussion.

II. LITERATURE REVIEW

An early work [2] proposes a convolutional keypoint
detection pipeline for generic objects. The viewpoint and
keypoints are predicted using models adapted from VGGNet
[3], and the viewpoint conditioned as well as the appearance
based log likelihood keypoint distributions are combined to
produce the resulting heatmaps. A multiscale structure is
designed for keypoint detection model to strike a balance
between accuracy and robustness. However, the number
of keypoints is sparse since it is limited by the available
annotations in the training set. Meanwhile, the ground-truth
class labels have to be provided during testing. Instead of
detecting class dependent keypoints, [4] investigates how
to use CNNs for generic feature detection, by proposing a
network that includes detection, orientation estimation and
feature description. Nevertheless, the training relies on SIFT
features.
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Regarding semantic keypoint detection, [5] proposes a
model capable of localizing landmarks for articulated objects
such as faces and birds. The network uses modified VGGNet
to extract features, which are fed into the Shape Basis
Network to express the object shape as a linear combination
of shapes bases, which act as global geometric priors. Next,
the coarse shape is refined in the Point Transformer Network
using thin-plate spline transformations to deal with pose
variations. The training set also contains manually labeled
landmark annotations.

Prior works [6], [7], [8], [9], [10] on weakly supervised
localization have demonstrated that object detectors emerge
in CNNs trained merely using class labels. Nevertheless,
these works mainly focus on detecting and locating objects
instead of keypoints. Recently, unsupervised learning of
keypoints also have emerged, such as [11], [12]. Indirect
self-supervision is used in [13].

III. WEAKLY SUPERVISED KEYPOINT DETECTION

At coarse scale, the contribution of each patch in the
input image for object classification is analyzed by covering
it and examining the change in the confidence of class
prediction similar to [14]. If the confidence of the correct
class drops dramatically due to the occlusion of a patch,
then the probability of the patch containing a discriminative
feature is very high.

Following the notation in [7], the network is denoted by
a mapping f : RN 7→ RC , x ∈ RN , y ∈ RC , where x
in an image of N pixels, and y = [y1, ..., yC ]

T denotes the
classification score of C classes, with yi being the probability
of the i th class. The pixels inside an occluder b of image
x are replaced by a vector g, and this occlusion function is
denoted by hg . Hence the change in classification score is
δf (x, b) = max(f(x) − f(hg(x, b)), 0). To avoid creating
edges, random colors are used as g instead of mono color,
which is advisable according to [6]. Since only the class with
maximum probability is considered, the decrease of score is
d(x, b) = δf (x, b)

T IC , where IC ∈ NC is an indicator vector
whose elements are zero except at the predicted class c.

One may argue that the occlusion could be conducted at
every pixel, such that it measures the discriminativeness at
a fine scale. The reasons for not using the occlusion densely
are twofold. Firstly, it is time consuming to do forward
passes repeatedly for all patches, especially for deep CNNs.
Secondly, the change in activations is induced at patch level,
and thus it is difficult to locate the exact feature within the
patch.

For the fine scale, guided backpropagation [15] is per-
formed on the unit that has maximum activation, whose
results reflect the effect of the input image at pixel level.
In other words, guided back-propagation from the softmax
layer reveals which pixel positively influences the class
prediction, by maximizing the probability of the predicted
class while minimizing that of other classes. During back-
propagation, the gradient of the predicted class with respect

to the input is computed, which locates the pixel where
the least modification has to be made in order to affect the
prediction the most. The activation at layer l + 1 could be
obtained from the activation at layer l through a ReLU unit as
fi

l+1 = ReLU(fi
l) = max(fi

l, 0). The back-propagation is
Ri

l = (fi
l > 0) · Ri

l+1, where Ri
l+1 = ∂fout

∂fil+1 . For guided
back-propagation, not only the input is positive, but also the
error, i.e. Ri

l = (fi
l > 0) · (Ri

l+1 > 0) ·Ri
l+1. In this way

the error is guided both by the input as well as the error. The
coarse scale and fine scale are combined linearly as in [2],
where sigmoid functions are used to transform the heatmaps
into log-likelihood keypoint distributions. This values is used
as the confidence score. Note that unlike [2] which needs
ground-truth class labels both during training and testing,
the class labels are not used in the proposed pipeline since
the class with highest activations is considered.

After the log-likelihood map is obtained, Non Maximum
Suppression is performed to prune the nearby keypoints.
For each keypoint, the subpixel coordinates are determined
using the F örstner operator [16] by solving a least squares
solution for Ax = b, i.e. x̂ = A−1b, where x, x̂ are the
original keypoints and keypoints with sub-pixel accuracy, w
is the window about the pixel, whose size is very small, and
Ix, Iy are the gradient images in the x and y direction. A, b
are given by

A =


∑
w
I2x

∑
w
IxIy∑

w
IxIy

∑
w
I2y

 , b =

∑
w
(I2xx+ IxIyy)∑

w
(IxIyx+ I2yy)


IV. EXPERIMENT

The keypoint detection framework is implemented using
FeatureVis library [17], and the pretrained model is VGG
Net-E [3] provided in [18]. An alternative model is ResNet,
but it does not seem to provide significant advantage over
VGG Net, by comparing the correspondence between the
patches that correspond to high activation changes and the
groundtruth landmarks, and the range and standard deviation
of the values for activation changes. Moreover, different
patch sizes for occlusion are also compared, including 8× 8
with stride size 8, 16 × 16 with stride size 8, 16 × 16 with
stride size 16, and 32 × 32 with stride size 16. It is found
that using smaller patch size produces more localized results,
albeit the change in activation is smaller. To trade off the
localization accuracy and the variation of activations, 16×16
and a stride size of 8 is chosen. To summarize, VGG Net is
used with a patch size of 16 × 16 and a stride size of 8 in
all the experiments.

The dataset in [19] is used for evaluation purposes, where
64 landmarks are manually selected to cover salient features
for car images. Since the groundtruth bounding box is not
provided, they are manually defined by using the positions
of the top left and bottom right landmark annotations that
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are visible, plus a margin to ensure that the entire body is
located inside the bounding box.

A. Keypoint prediction

The proposed keypoint detection is evaluated qualitatively
in this section. A soft threshold is used for pruning the
keypoints, where only the top 40% based on confidence score
is kept. The car images used in Fig. 2 from first to last rows
are Skoda Fabia 2007, BMW X6 2009, Chevrolet Colorado-
LS 2004, Nissan Xterra 2005, where the car size increases.

As can be seen from Fig. 2, the most important patches are
usually those centered around the keypoints, such as those
near the rear view mirrors, head lights as well as the wheels,
which are semantically consistent. Occluding these patches
with a randomly colored square box leads to significant drop
in activations, which indicates that regions close to the key-
points are critical for classification. Moreover, the rear view
mirrors as well as car logos are always highlighted in the gra-
dient images from guided back-propagation, which confirms
the close relevance of keypoints and high activations. From
the last two columns, the keypoints detected using weak
supervision is comparable to the ground-truth annotations.
For instance, the positions of the detected keypoints on the
car logos and rear view mirrors are almost identical to the
ground-truth, which demonstrates the effectiveness of the
proposed framework without relying on manual annotations.

B. Salient feature prediction

The proposed keypoint detection could also be used to
predict which features are salient. The detected keypoints are
compared with the visible landmarks in each image contained
in the dataset of [19], which has 30 different models and
300 images in total. PCK (probability of correct keypoint)
is used as the metric to determine whether a landmark is
also considered as a salient keypoint, which means that a
landmark is found if there is a predicted keypoint that lies
within αmax(h,w) of it, where h,w is the size of the
bounding box, and α = 0.2.

A histogram could be built based on the occurrence of the
detected landmarks for each car, and the ones that appear
most frequently are reported in Table I. The landmark index
and the location of the landmarks are also indicated. The
landmark locations are roughly divided into several salient
parts, including bonnet, headlight, windscreen, wheel, and
the rest of the body. Since the car is symmetric, there is no
distinction for left and right corresponding parts.

From Table I, it could be observed that the salient land-
marks are still different for different models, even though
the make is the same. In addition, headlight remains salient
across different makes and models. Moreover, the most
frequently detected landmarks for all the cars is 52, which
is located at the right part of the bonnet. This indicates that
the bonnet is important for CNNs to make classifications.
To summarize, the car manufactures could consider focusing

more on the design of headlight and bonnet to make their
cars stand out from others.

V. DISCUSSION

This work tackles the keypoint detection task, which is vi-
tal for semantic scene analysis for self driving cars. A weakly
supervised keypoint detection pipeline is proposed to deal
with the keypoint scarcity in the training set induced by the
time consuming annotation process. The heatmaps produced
from occlusion method and guided back-propagation are
unified in a multiscale framework to produce a log-likelihood
distribution of keypoints. The proposed method does not
require full supervision during training and the ground-truth
class labels are unnecessary for testing. The effectiveness of
the proposed framework are demonstrated qualitatively on
keypoint prediction and salient feature prediction using car
images.

For future work, viewpoint annotations may be a more
effective supervision than class labels. The viewpoint estima-
tion is formulated as a fine-grained classification task using
real and synthetic images in [1]. As a follow up work, [20]
integrates classification and viewpoint estimation in a unified
framework. Hence it is interesting to explore the additional
benefits brought by viewpoint annotations compared with
merely providing class labels, by using the models trained
in [20].
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