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Motivation

1. GPS could be jammed or blocked.

2. Pose estimation by fusing inertial measurement unit (IMU) and optical flow suffers from drift.

3. UAVs that take off and land in different positions which may not revisit the same scene.

Objective

Figure 1: Overview. Sub-fig. a: The quadrotor platform. Sub-fig. b: Geo-referenced UAV navigation.
In this work, the localization of a UAV flying over the urban canyons is addressed. The quadro-

tor could reply on the on-board camera, IMU and the Google Map to estimate its position. Fig. 1
shows an overview of our approach.

Challenges

1. Significant scene changes due to difference in modality, viewpoint, weather, etc.

2. Lack of visible features in certain regions of low resolution map.

3. Large illumination variation for on-the-fly images.

Contributions

1. A robust visual navigation framework is explained in details. It uses a low resolution map for
reference, which saves memory consumption and computational resources.

2. A simple yet effective navigation framework is proposed, which relies on correlation for initial-
ization, Histogram of Oriented Gradients (HOG) features to describe the images, optical flow
for motion prediction, and particle filters to avoid too many comparisons with sliding window.

3. To the best of our knowledge, this is the first time that low resolution Google Map is used for
UAV navigation.

Geo-referenced navigation

Figure 2: Pipeline of the proposed approach.
Fig. 2 shows the pipeline. HOG features for the map are computed offline. During onboard

processing, we use global search to initialize the UAV position. Then for each frame, we track the
pose by position prediction and image registration.

Global localization
After taking off, the UAV location is searched in the entire map for initialization. We correlate the
current frame and the map as in Eq. 1, where F is the 2D Fourier transform of the input image:
F = F(f ), H is the transform of the map: H = F(h), � denotes element wise multiplication
and * indicates complex conjugate. As a result, transforming G into the spatial domain gives a
confidence map of the location.

G = F �H∗ (1)

Pose tracking
Position prediction

We confine the matching around the predicted position. Shi-Tomasi corner detector and itera-
tive Lucas-Kanade method with pyramids are used to obtain the optical flow. The inter-frame
translation could be derived using Eq. 2 and Eq. 3, assuming the ground plane is flat:

H = R +
1

h
TNT (2)

where H is the homography, R and T are the inter-frame rotation and translation, N is the nor-
mal vector of the ground plane, and h is the altitude. R, N, h are obtained from the on-board
IMU and T can be calculated as

T = h(H−R)N (3)

Image description

Figure 3: Visualization of HOG glyph.
We use HOG as an image descriptor to encode the gradient information in multi-modal images.

The HOG glyph is visualized in Fig. 3. It is evident that the gradient patterns remain similar

even though the on-board image undergoes photometric variations compared with the map. In
particular, the structures of road and house are clearly preserved.

Coarse to fine image registration

Comparison of HOG features is time consuming, and thus we employ particle filters. There are
N particles, and for each particle p, its properties include {x, y,Hx, Hy, w}, where (x, y) specify
the top left pixel of the particle, (Hx, Hy) is the size of the subimage covered by the particle and
w is the weight. Suppose each p predicts a location l, then the estimation is computed in Eq. 4.

E(l) =

N∑
i=1

wili (4)

We use Gaussian distribution to normalize these distance values based on Eq. 5, where di is the
distance between the two images under comparison, σ is the standard deviation, wi is normalized
using the sum of all weights to ensure that it lies in the range [0, 1].

wi =
1√

2πσ2
exp(
−di2

2σ2
) (5)

For the coarse search, N particles are drawn randomly in a rectangular area, whose width and
height are both sc, with a large search interval ∆c. The fine search is used if the minimum distance
of coarse search is larger than a threshold τd, and it is confined in an smaller area with size sf and
search interval ∆f . When the minimum distances in both coarse and fine search are above the
threshold τd, i.e. an outlier, the predicted position is retained.

Results

Figure 4: Path analysis comparing GPS (red line), OF for optical flow (brown line), and HOP for our method (green
dots for reliable matches and blue crosses for outliers where OF is used).

As shown in Fig. 4, the proposed method is both accurate and reliable, because it takes advan-
tage of not only the accuracy of HOG based localisation, but also the reliability of optical flow
based position prediction. Compared to GPS, the root mean square error (RMSE) of our method
is 6.773 m. The errors are quite small compared with a 169.188 m RMSE for the visual odometry
based on optical flow alone.

Key insights
1. Low resolution Google Map could be used to provide prior information for localization.

2. HOG is an effective descriptor for multi-modal image registration.

3. Particle filter could be used in a coarse to fine scheme to increase image registration efficiency.


