The input is an online acquired RGB-D sequence being reconstructed with real-time depth-fusion, denote RGBD sequence by

 $f^{K} = \left\{ \left(C_{m}^{K}, P_{m}^{K} \right) \right\}_{m=0}^{M} \quad K = 0 \cdots K$

where GM, PK Store RGBD into of pixel m of frame K and its 30 coordinates.

Given a reconstruction represented by a point set P, we construct a global tree Tq maintaining the Spatial organization of all points, as well as a per-point local tree {TL(P) } pep storing the 1-ring neighbourhood for each point.

Global coordinate interval tree. We maintain three coordinate interval trees Tix, Tix, Tix, one for each dimension. Eg. For Tix, each node ni ETix records a set of points Pix CP in which each point has its X-coordinate lie in interval [Xmin(ni), Xmax (ni)]. We stipulate the adjacent nodes in a coordinate interval tree complies with constraints:

Xmax (ne) < Xmin (np), Xmax (np) < Xmin (nx).

with ne, no being the left and right child of np. The entire 3D scene is then split into slices along X-dimension.

Point insertion of coordinate interval tree Given a 3D point P= (xp, yp, zp), we first find a node net TG satisfying Xp E[Xmin(ni), Xmax (ni)]

through a top down traverse of tree. If such a node exists, p is added to point set Pix of the node. Otherwise, we create a new leaf node whose point set is initialized as Spi and coordinate interval as [xp-h, xpth],

After constructing the coordinate interval trees for all three dimensions, we can achieve efficient point correspondence search and neighborhood retrival for any given query 3D point q = (xq, yq, zq). Through traversing the three trees, we obtain three nodes

nieta, njeta, nketa (ntofilia)

Satisfying

Xp & [Xmin(ni), Xmax(ni)]

Hp & [Jmin(nj), Jmax(nj)]

Zp E [Zmin (nK), Zmax (nK)]
The neighbouring points are simply the intersection of the three corresponding point sets:

 $\mathcal{N}(p) = P_i^x \cap P_j^y \cap P_k^z$

Local per-point octrees We need to sore the set of neighboring points into a structured organization based on surface aware metric. This is achieved by maintaining per-point octrees so that the surface-aware reighborhood in arbitrary scale can be found efficiently.

Given point PEP, first retrieve its local neighborhood NCP) using coordinate interval trees, Then divide the extended point set UNCP) according to eight quadrants of Cartesian coordinate originated at P.

Within each quadrant, we add the point that is closest to p as the child of the corresponding direction, we then compute a 1-ring neighbourhood in a direction-aware octree. The can easily expend the 1-ring neighborhood of a point into multiple rings through chaining Octree-based neighbor searches.

Fusion aware point convolution. We propose a convolution operation which extends Point Conv with intra-frame and inter-frame feature fusion named fusion aware point convolution.

 $PC_{p}(W, F) = \sum_{4P \in \mathcal{N}} W(OP) F(P+OP)$

where F(P+OP) is the feature of a point in local region Ω , centered at P, W is weight.

2D-3D feature fusion.

The feature coding at a 3D point should consider all matched pixels in different frames. Pixel correspondence between consecutive frames can be easily retrieved based on Tox, To, To, To, Each 3D point p has a set of 2D pixels

I(p) = { C (| K E n)

We can extract feature for each pixel ck intra-frame via 2D conv. We adopt FuseNet as 2D feature encoder

F20 (ck) = Fuse Net (fix, ck)

Where Fuse Nex (fic, CK) is 2D feature for pixel CK in frame fic. i. Each 3D point p in the scene has a set of corresponding 2D features, and max pooling is adopted to fuse them into one feature.

F2P3D(p) = maxpooling {F2D(CK) | CKE I(P)].

Octree induced surface aware 30 convolution. The local region of for each point p is given by octree TL(p), this could ensure the neighborhood would only enlarge along the object surface, which is surface-aware, but not skip some gaps to reach shortest distance.

Frame to frame flature fusion. We use the segmentation results given by previous frames to improve the Performance of following frames. For each 3D point p, our method would update its segmentation result if it is observed by a new frame fi, if p has low segmentation uncertainty in frame fi, the current form of feature fusion should be useful in future prediction, the fusion is conducted via max-pooling.