A spatiotemporal model with visual attention for video classification

Mo Shan and Nikolay Atanasov

Department of Electrical and Computer Engineering

July 16, 2017

Outline

Motivation

Proposed model

Experiment

Conclusion

Motivation

Video classification

- Semantic understanding of sequential visual input is important for robots in localization and object detection.
- ▶ Eg, search for a cat in a living room, instead of in a gym.

Source: Harvey M., Five video classification methods

Motivation

Rotation and scale

- Existing benchmark contains videos of daily scenes.
- Objects in real world could be rotated and scaled.

Motivation

Visual attention

Attention mechanism reduces complexity and avoids cluttering. This makes it easier to deal with rotated and scaled images.

Source: cs231n, Stanford

Proposed model

Architecture

- The proposed model concatenates CNN to RNN.
- ► The CNN stage is augmented with attention modules.

Proposed model

Attention modules

- ► STN (Jaderberg, 2015) learns a global affine transformation.
- DCN (Dai, 2017) learns offsets locally and densely.

Dataset

Moving MNIST is augmented with rotation and scaling.

03	B	Ø	&	g	g
8	8	8	ď	04	04
Ð	Đ	Ð	ъ	ð	ð
,0	,0	20	9	9	0

Quantitative analysis

- Results are shown in Table 1.
- DCN-LSTM consistently performs the best in all cases.

Table: Comparison of cross entropy loss and test accuracy for the proposed model and baseline.

Moving MNIST	LeNet-LSTM	STN-LSTM	DCN-LSTM
Normal	1.44, 97.96%	1.98, 87.26%	1.27, 99.62%
Rotation	1.42, 98.43%	1.97, 90.47%	1.29, 99.70%
Scaling	1.52, 96.28%	1.99,86.90%	1.28, 99.41%
Rotation+Scaling	1.51, 96.82%	1.99,89.10%	1.25, 99.46%

Qualitative analysis

▶ STN could not attend to each digit individually.

Digit gesture classification

- Elastic deformation simulates oscillations of hand muscles.
- Results are shown in Table 2.
- DCN could learn the deformation field explicitly.
- DCN-LSTM has the potential to handle articulated objects.

Table: Cross entropy loss and test accuracy for deformed digits.

LeNet-LSTM	STN-LSTM	DCN-LSTM
1.48, 97.19%	1.48,97.19%	1.28, 99.30%

Conclusion Key insights

- ▶ DCN-LSTM achieves high accuracy compared to baseline.
- Attention is useful to deal with rotation and scale changes.
- ▶ STN-LSTM performs poorly due to global transformation.
- ▶ Future work: how to train the entire model end to end.