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Metric-Semantic SLAM
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● Why semantic localization:
○ Enables the robot to do loop closure to correct the drift 
○ Can handle large baseline localization in the wild, by matching objects instead 

of geometric features 
○ Execute tasks in terms of object entities  

[1] Where are the Keys? – Learning Object-Centric Navigation Policies on Semantic Maps with Graph Convolutional Networks



Metric-Semantic SLAM
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● Unified formulation of SLAM including:
○ Metric information: visual features, inertial measurements
○ Semantic information: object detections, object parts, semantic segmentation
○ Data association: correspondences among observations and landmarks



Metric-Semantic SLAM
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● Metric measurements include geometric features and IMU measurements 



Metric-Semantic SLAM
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● Semantic measurements are object bounding boxes, semantic keypoints, etc 

[1] StarMap for Category-Agnostic Keypoint and Viewpoint Estimation



Metric-Semantic SLAM
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● Data association links the measurements to landmarks 



Metric-Semantic SLAM
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● Sensor states are in SE(3) and semantic map is an object-level map 



Object residual constrained VIO
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● Harness the strength of both VIO and deep neural networks
● Output geometrically consistent, semantically meaningful maps

[1] ORB-SLAM: a Versatile and Accurate Monocular SLAM System
[2] Mask R-CNN

https://docs.google.com/file/d/1b1ZRGtBd4-SyPKUKwFkMb-bhGL7w33KR/preview
https://docs.google.com/file/d/1XMgpyfehEqurJWYf614CsZYhNf3af50-/preview


Semantic SLAM 
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● Kimera uses visual and inertial measurements to build a 
semantically annotated 3D mesh of the scene  

[1] Incremental Visual-Inertial 3D Mesh Generation with Structural Regularities



Semantic SLAM 
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● This work detects the road elements such as traffic signs, road lanes, 
and parameterizes the semantic elements to form a compact 
semantic map

[1] Road Mapping and Localization Using Sparse Semantic Visual Features



Category-specific Object SLAM 
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● Category-specific  approaches  optimize  the  pose  and  shape of 
object instances using 3D shape models/semantic keypoints

[1] Slam++: Simultaneous localisation and mapping at the level of objects
[2] Constructing category-specific models for monocular object-slam



Category-agnostic Object SLAM 
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● Category-agnostic approaches use geometric shapes such as ellipsoids 
or cuboids to represent objects

[1] Quadricslam: Dual quadrics from object detections as landmarks in object-oriented slam
[2] Cubeslam: Monocular 3-d object slam



Bi-level Object Model
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● Object class: ellipsoid (coarse level) and keypoints (fine level)
● Object instance: deformations of ellipsoid, mean shape and pose

[1] OrcVIO: Object residual constrained Visual-Inertial Odometry



Sensor states
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● Sensor states consist of IMU state and camera states  



Problem Formulation
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Front End
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● Geometric features
○ normalized pixel coordinates of n-th keypoint at time t

● Semantic Features 
○ normalized pixel coordinates of j-th keypoint of object detection k 

at time t 
● Bounding box 

○ normalized pixel coordinates of j-th line of object bounding box k  



Front End
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● StarMap is used to detect semantic keypoints 
● We add drop out layers in original network to obtain covariance 

[1] StarMap for Category-Agnostic Keypoint and Viewpoint Estimation



Front End
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● Kalman filter tracks semantic keypoints on an object level

[1] OrcVIO: Object residual constrained Visual-Inertial Odometry



Back End

19[1] OrcVIO: Object residual constrained Visual-Inertial Odometry



Residual functions
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● Geometric keypoint error: an observed geometric keypoint should be 
equal to the image plane projection of its corresponding 3D landmark



Residual functions
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● Semantic keypoint error: an observed semantic keypoint should be equal 
to the image plane projection of its corresponding semantic landmark



Residual functions
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● Bounding box error: the bounding box lines should be tangent to the conic 
projection of the object quadric surface



Residual functions
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● Object shape regularization: penalize the deviation of the reconstructed 
shape from the average class shape 



Lie Group
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● Poses have a manifold structure, need to derive the Jacobians in the 
tangent space  

 



Semantic keypoint residual
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Semantic bounding box residual
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Visual-inertial Odometry
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● Filtering based multi-state constraint Kalman filter (MSCKF):
○ Batch optimization over object/landmark when track is lost
○ Null-space trick: the optimized object/landmark state is used 

for a Kalman filter update to the sensor pose but is not 
retained in the filter state

 

[1] A Multi-State Constraint Kalman Filter for Vision-aided Inertial Navigation



Visual-inertial Odometry
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● Split the IMU dynamics into deterministic nominal and stochastic 
error dynamics via the perturbations

● Nominal dynamics: integrate in closed-form (assuming constant 
input) to obtain predicted mean

● Stochastic error dynamics: integrate to obtain covariance

 



Prediction Step
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● Closed-form solutions to the linear time invariant (LTI) ordinary 
differential equations (ODEs) from nominal dynamics 

 



Prediction Step
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● Closed-form solutions to the linear time variant (LTV) stochastic 
differential equation (SDE) from stochastic error dynamics 

 



Update Step
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● When an object/landmark track is lost, optimize its state given the current sensor state 

 

● Levenberg-Marquardt with error Jacobians obtained via object state perturbation: 

 

● Eliminate object state from sensor state residual via left-nullspace matrix 

 

0



Contributions 
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● We introduce object states in the formulation SLAM, with coarse 
ellipsoid shape, and fine semantic-keypoint shape

● We define residuals relating object states and IMU camera states 
to inertial measurements, geometric features, object semantic 
features, and object bounding-box detections

● We propose closed-form mean and covariance propagation over 
the SE(3) pose and velocity manifold of the IMU-camera states 

 



Evaluation
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● Object-level map and reprojected object states on KITTI odom 07

https://docs.google.com/file/d/1AfpE6EBYwNyNbWejsIn0HkFwQBNQZsxi/preview
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https://docs.google.com/file/d/1rGG1cu79HV7MQOiybv0frhAmRYTAj6os/preview


Evaluation
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● Indoor scene with hand-held VI sensor to map chairs   

https://docs.google.com/file/d/1-oRGuNQk3lyYI2Vjrp8Z_gU3thJWSLr2/preview


Evaluation
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● Indoor scene with VI sensor on robotic car to map chairs   

https://docs.google.com/file/d/1L6xfLOeK8Bmzgu85KSak5aFBsHUUisJo/preview


Evaluation
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● Outdoor scene with hand-held VI sensor to map chairs, bikes, cars   

https://docs.google.com/file/d/1PWP5E1ehYPK-SiNu82pZz_OLWDI7Mb1c/preview


Evaluation

38

● Outdoor scene with VI sensor on robotic car to map barrels    

https://docs.google.com/file/d/1aFvpI3HXTX1bLoAho8mh_8NYd2v2spbH/preview


Evaluation
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● Quantitative results comparable with SOTA 



Evaluation
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● Stereo VIO trajectory accuracy comparable with SOTA 



Open-sourced OrcVIO
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https://github.com/shanmo?tab=repositories

Python C++ ROS support Mapping Requires Note

OrcVIO ✓ ✓ ✓ Mono imgs
Bounding boxes

Semantic kps

Original

OrcVIO Lite ✓ ✓ ✓ Mono imgs 
Bounding boxes

Simplified 
mapper

OrcVIO 
Stereo

✓ ✓ ✓ External 
mapper

Stereo imgs
Bounding boxes

More robust 
VIO

External 
mapper

Mono imgs
Bounding boxes
Camera poses

Compatible 
with all 
OrcVIO

https://github.com/shanmo?tab=repositories


SDF
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● The surface can be implicitly represented by the zero-level set 



Review
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● DeepSDF directly regresses SDF 
● Latent vectors are optimized along with the decoder weights through standard 

backpropagation
● During inference, decoder weights are fixed, and an optimal latent vector is estimated

Image source: http://www.pair.toronto.edu/csc2547-w21/assets/slides/DeepSDF_TianchangShen.pdf



Latent space traversal

44[1] Generative Adversarial Networks and Autoencoders for 3D Shapes

https://docs.google.com/file/d/1iusy9v3zJmcrwQKpHvWOA4IOa16OaiI7/preview


DualSDF
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● DualSDF expresses shapes at two levels of granularity
○ Fine level captures fine details
○ Coarse level represents an abstracted proxy shape using simple and 

semantically consistent shape primitives

[1] DualSDF: Semantic Shape Manipulation 
using a Two-Level Representation

https://docs.google.com/file/d/1HRfyEbc5KDfS4dN9OPNCsJPXDSlzodB5/preview


FroDO
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● FroDO uses joint shape embedding
○ sparse point-based (efficiency) 
○ dense surface (expressiveness) object shape representations

[1] FroDO: From Detections to 3D Objects



Motivation
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● Right balance between faithful object reconstruction and a compact object representation
● A bi-level object model with coarse and fine levels, to enable joint optimization of object 

pose and shape. The two levels are coupled via a shared latent space
○ Coarse-level uses a primitive shape for robust pose and scale initialization
○ Fine-level uses SDF residual directly to allow accurate shape modeling

● A cost function to measure the mismatch between the bi-level object model and the 
segmented RGB-D observations in the world frame

[1] ELLIPSDF: Joint Object Pose and Shape Optimization with a Bi-level Ellipsoid and Signed Distance Function Description



Problem Formulation 
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● Overall cost = coarse shape error + fine shape error + regularization

● Training cost

● Testing cost



Overview
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● Point cloud & initial pose (green) obtained from RGB-D detections with known 
camera poses (blue)



Overview
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● A bi-level category shape description, consisting of a latent shape code, a coarse 
shape decoder, and a fine shape decoder (orange), is trained offline using a dataset 
of mesh models



Overview
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● Given the observed point cloud, the pose and shape deformation of the newly seen 
instance are optimized jointly online, achieving shape reconstruction in the global 
frame (red)



Object Pose Initialization
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● Reconstruct ellipsoids from ellipses for initial object pose

[1] 3D Object Localisation from Multi-view Image Detections



Object Pose & Shape Optimization
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● Training phase: optimize parameters of object class using offline data, from known meshes
● Testing phase: optimize the pose T and shape deformation δz of a previously unseen instance 

from the same category using online distance data from an RGB-D camera
○ Residuals relate both the object pose and shape to the SDF residual to enable joint 

optimization
○ Solve joint object pose and shape optimization via gradient descent



Qualitative results 
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● ELLIPSDF decoder model trained on synthetic CAD models in ShapeNet, visualization shows: 
○ RGB image, depth image, instance segmentation (yellow), fitted ellipse (red) 



Qualitative results 
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● ELLIPSDF decoder model trained on synthetic CAD models in ShapeNet, visualization shows: 
○ Mean shape and ellipsoid with initial pose



Qualitative results 
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● ELLIPSDF decoder model trained on synthetic CAD models in ShapeNet, visualization shows: 
○ Optimized fine-level and coarse-level shapes with optimized pose



Qualitative results 
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● Optimization step improves the scale and shape estimates notably on ScanNet, e.g. by 
transforming the four-leg mean shape into an armchair



Qualitative results 
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● Reconstruction for a scene with multiple objects 
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Quantitative results 
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● Large-scale evaluation on ScanNet
○ Optimization step improves pose estimation accuracy 
○ Coarse+fine model outperforms fine-model-only for shape estimation
○ ELLIPSDF is comparable with SOTA 

[1] Frodo: From detections to 3d objects
[2] MOLTR: Multiple Object Localization, Tracking and Reconstruction From Monocular RGB Videos
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Timing 
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● Init is the pose initialization for 100 views
● Latent Code Opt and SIM(3) Opt are a single SGD step with respect to δz and 

T respectively using 10000 points as batch size
● SDF Decoding and Meshing are optional steps that generate SDF predictions 

over 2563 points and apply Marching Cubes to generate a mesh
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Contributions  
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● To summarize, the main contribution of this work is the design of
○ a bi-level object model with coarse and fine levels, enabling joint 

optimization of object pose and shape
○ a cost function to measure the mismatch between the bi-level object 

model and the segmented RGB-D observations in the world frame



Future Directions
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● Data association for loop closure for cars and quadrotors 

https://docs.google.com/file/d/1FINP-e4EQEwIN72TP-5TTodFck65y767/preview


Future Directions
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● Dynamic object tracking 

[1]  3D Multi-Object Tracking: A Baseline and New Evaluation Metrics



Future Direction

64

● Vision only object shape optimization 

[1] DISN: Deep Implicit Surface Network for High-quality Single-view 3D Reconstruction


