Metric-Semantic Simultaneous Localization and Mapping #### **Mo Shan** Advisor: Nikolay Atanasov **Existential Robotics Laboratory** University of California, San Diego - Why semantic localization: - Enables the robot to do loop closure to correct the drift - Can handle large baseline localization in the wild, by matching objects instead of geometric features - Execute tasks in terms of object entities [1] Where are the Keys? – Learning Object-Centric Navigation Policies on Semantic Maps with Graph Convolutional Networks - Unified formulation of SLAM including: - Metric information: visual features, inertial measurements - Semantic information: object detections, object parts, semantic segmentation - Data association: correspondences among observations and landmarks Metric measurements include geometric features and IMU measurements Semantic measurements are object bounding boxes, semantic keypoints, etc Data association links the measurements to landmarks Sensor states are in SE(3) and semantic map is an object-level map # **Object residual constrained VIO** - Harness the strength of both VIO and deep neural networks - Output geometrically consistent, semantically meaningful maps - [1] ORB-SLAM: a Versatile and Accurate Monocular SLAM System - [2] Mask R-CNN #### **Semantic SLAM** Kimera uses visual and inertial measurements to build a semantically annotated 3D mesh of the scene [1] Incremental Visual-Inertial 3D Mesh Generation with Structural Regularities #### **Semantic SLAM** This work detects the road elements such as traffic signs, road lanes, and parameterizes the semantic elements to form a compact semantic map # **Category-specific Object SLAM** Category-specific approaches optimize the pose and shape of object instances using 3D shape models/semantic keypoints - [1] Slam++: Simultaneous localisation and mapping at the level of objects - [2] Constructing category-specific models for monocular object-slam # Category-agnostic Object SLAM Category-agnostic approaches use geometric shapes such as ellipsoids or cuboids to represent objects - [1] Quadricslam: Dual quadrics from object detections as landmarks in object-oriented slam - [2] Cubeslam: Monocular 3-d object slam # **Bi-level Object Model** - Object class: ellipsoid (coarse level) and keypoints (fine level) - Object instance: deformations of ellipsoid, mean shape and pose - Object Class: (σ, s, u) - $\sigma \in \{car, chair, table, ...\}$ - $s \in \mathbb{R}^{3 \times N}$ positions of N semantic landmarks in the object frame - $u \in \mathbb{R}^3$ shape: $\mathcal{E}_u = \{x \mid x^T diag(u)^{-2}x \leq 1\}$ - Object Instance: $({}_{0}\boldsymbol{T}, \delta \boldsymbol{s}, \delta \boldsymbol{u})$ - $_{O}$ **T** \in *SE*(3) world frame pose - $\delta s \in \mathbb{R}^{3 \times N}$ position deformations of the N semantic landmarks in 3D - $\delta u \in \mathbb{R}^3$ shape deformation #### **Sensor states** Sensor states consist of IMU state and camera states IMU state: ${}_{I}\boldsymbol{x}=({}_{I}\boldsymbol{R},{}_{I}\boldsymbol{p},{}_{I}\boldsymbol{v},\boldsymbol{b}_{g},\boldsymbol{b}_{a})$ - IMU orientation: $_IR \in SO(3)$ - IMU position: ${}_{I}oldsymbol{p}\in\mathbb{R}^3$ - IMU velocity: ${}_{I} oldsymbol{v} \in \mathbb{R}^3$ - IMU bias: $oldsymbol{b}_q \in \mathbb{R}^3, oldsymbol{b_a} \in \mathbb{R}^3$ Camera state: Cx_t - Camera pose $_{C}oldsymbol{T_{t}}\in SE(3)$ - Cam-to-IMU frame transformation: ${}^I_{C} {m T} \in SE(3)$ #### **Problem Formulation** #### **Front End** - ullet Geometric features $\,g_{oldsymbol{Z}_{t,n}} \in \mathbb{R}^2\,$ - normalized pixel coordinates of n-th keypoint at time t - ullet Semantic Features ${}^s {f Z}_{t,i,k} \in \mathbb{R}^2$ - normalized pixel coordinates of j-th keypoint of object detection k at time t - ullet Bounding box $b_{Z_{t,j,k}} \in \mathbb{R}^2$ - normalized pixel coordinates of j-th line of object bounding box k #### **Front End** - StarMap is used to detect semantic keypoints - We add drop out layers in original network to obtain covariance # **Front End** Kalman filter tracks semantic keypoints on an object level # **Back End** Geometric keypoint error: an observed geometric keypoint should be equal to the image plane projection of its corresponding 3D landmark $$g_e(x_t,\ell,g_Z) = P\piig(c_t^{-1}\ellig) - g_Z$$ • **Semantic keypoint error**: an observed semantic keypoint should be equal to the image plane projection of its corresponding semantic landmark Bounding box error: the bounding box lines should be tangent to the conic projection of the object quadric surface • **Object shape regularization**: penalize the deviation of the reconstructed shape from the average class shape # **Lie Group** Poses have a manifold structure, need to derive the Jacobians in the tangent space # Semantic keypoint residual $$\frac{\partial^s \mathbf{e}}{\partial_C \boldsymbol{\xi}_t} = -\frac{\partial^s \mathbf{e}}{\partial_O \boldsymbol{\xi}} \in \mathbb{R}^{2 \times 6}$$ $$\frac{\partial^{s} \mathbf{e}}{\partial_{O} \boldsymbol{\xi}} = \mathbf{P} \frac{d\pi}{d\underline{\mathbf{s}}} \left({_{C}} \hat{\mathbf{T}}_{t}^{-1} {_{O}} \hat{\mathbf{T}} \left(\underline{\mathbf{s}}_{j} + \delta \underline{\hat{\mathbf{s}}} \right)_{j} \right) {_{C}} \hat{\mathbf{T}}_{t}^{-1} \left[{_{O}} \hat{\mathbf{T}} \left(\underline{\mathbf{s}}_{j} + \delta \underline{\hat{\mathbf{s}}} \right)_{j} \right]^{\odot} \frac{\partial^{s} \mathbf{e}}{\partial \delta \tilde{\mathbf{s}}_{j}} = \mathbf{P} \frac{d\pi}{d\underline{\mathbf{s}}} \left({_{C}} \hat{\mathbf{T}}_{t}^{-1} {_{O}} \hat{\mathbf{T}} \left(\underline{\mathbf{s}}_{j} + \delta \underline{\hat{\mathbf{s}}} \right)_{j} \right) {_{C}} \hat{\mathbf{T}}_{t}^{-1} {_{O}} \hat{\mathbf{T}} \left[\mathbf{I}_{3} \\ \mathbf{0}^{\top} \right] \in \mathbb{R}^{2 \times 3}.$$ # Semantic bounding box residual $$\frac{\partial^{b} \mathbf{e}}{\partial_{C} \boldsymbol{\xi}_{t}} = -\frac{\partial^{b} \mathbf{e}}{\partial_{O} \boldsymbol{\xi}} \in \mathbb{R}^{1 \times 6}$$ $$\frac{\partial^{b} \mathbf{e}}{\partial_{O} \boldsymbol{\xi}} = 2^{b} \underline{\mathbf{z}}^{\top} \mathbf{P}_{C} \hat{\mathbf{T}}_{t}^{-1}{}_{O} \hat{\mathbf{T}} \hat{\mathbf{Q}}_{(\mathbf{u} + \delta \hat{\mathbf{u}})}^{*}{}_{O} \hat{\mathbf{T}}^{\top} \left[{}_{C} \hat{\mathbf{T}}_{t}^{-\top} \mathbf{P}^{\top b} \underline{\mathbf{z}}\right]^{\odot \top}$$ $$\frac{\partial^b \mathbf{e}}{\partial \delta \tilde{\mathbf{u}}} = (2(\mathbf{u} + \delta \hat{\mathbf{u}}) \odot \mathbf{y} \odot \mathbf{y})^\top \in \mathbb{R}^{1 \times 3}$$ $$\mathbf{y} \triangleq \begin{bmatrix} \mathbf{I}_3 & \mathbf{0} \end{bmatrix}_O \hat{\mathbf{T}}^\top_C \hat{\mathbf{T}}_t^{-\top} \mathbf{P}^{\top b} \underline{\mathbf{z}}.$$ # **Visual-inertial Odometry** - Filtering based multi-state constraint Kalman filter (MSCKF): - Batch optimization over object/landmark when track is lost - Null-space trick: the optimized object/landmark state is used for a Kalman filter update to the sensor pose but is not retained in the filter state #### Algorithm 1 Multi-State Constraint Filter **Propagation**: For each IMU measurement received, propagate the filter state and covariance (cf. Section III-B). Image registration: Every time a new image is recorded, - augment the state and covariance matrix with a copy of the current camera pose estimate (cf. Section III-C). - image processing module begins operation. **Update**: When the feature measurements of a given image become available, perform an EKF update (cf. Sections III-D and III-E). # **Visual-inertial Odometry** - Split the IMU dynamics into deterministic nominal and stochastic error dynamics via the perturbations - Nominal dynamics: integrate in closed-form (assuming constant input) to obtain predicted mean $$_{I}\dot{\hat{\mathbf{R}}} = {}_{I}\hat{\mathbf{R}}\left({}^{i}\boldsymbol{\omega} - \hat{\mathbf{b}}_{g}\right)_{\times}, \qquad \dot{\hat{\mathbf{b}}}_{g} = \mathbf{0}, \qquad \dot{\hat{\mathbf{b}}}_{a} = \mathbf{0},$$ $_{I}\dot{\hat{\mathbf{v}}} = {}_{I}\hat{\mathbf{R}}\left({}^{i}\mathbf{a} - \hat{\mathbf{b}}_{a}\right) + \mathbf{g}, \qquad {}_{I}\dot{\hat{\mathbf{p}}} = {}_{I}\hat{\mathbf{v}},$ Stochastic error dynamics: integrate to obtain covariance $$I\dot{\hat{\boldsymbol{\theta}}} = -\left({}^{i}\boldsymbol{\omega} - \hat{\mathbf{b}}_{g}\right)_{\times} I\boldsymbol{\theta} - \left(\tilde{\mathbf{b}}_{g} + \mathbf{n}_{\boldsymbol{\omega}}\right),$$ $$I\dot{\tilde{\mathbf{v}}} = -I\hat{\mathbf{R}}\left({}^{i}\mathbf{a} - \hat{\mathbf{b}}_{a}\right)_{\times} I\boldsymbol{\theta} - I\hat{\mathbf{R}}\left(\tilde{\mathbf{b}}_{a} + \mathbf{n}_{\mathbf{a}}\right),$$ $$I\dot{\tilde{\mathbf{p}}} = I\tilde{\mathbf{v}}, \qquad \dot{\tilde{\mathbf{b}}}_{g} = \mathbf{n}_{g}, \qquad \dot{\tilde{\mathbf{b}}}_{a} = \mathbf{n}_{a}.$$ # **Prediction Step** Closed-form solutions to the linear time invariant (LTI) ordinary differential equations (ODEs) from nominal dynamics $${}_{I}\mathbf{R} = {}_{I}\hat{\mathbf{R}}\exp\left({}_{I}\boldsymbol{\theta}_{\times}\right) \quad {}_{I}\mathbf{p} = {}_{I}\tilde{\mathbf{p}} + {}_{I}\hat{\mathbf{p}} \quad {}_{I}\mathbf{v} = {}_{I}\tilde{\mathbf{v}} + {}_{I}\hat{\mathbf{v}}$$ $${}_{C}\mathbf{T} = {}_{C}\hat{\mathbf{T}}\exp\left({}_{C}\boldsymbol{\xi}_{\times}\right) \quad \mathbf{b}_{g} = \tilde{\mathbf{b}}_{g} + \hat{\mathbf{b}}_{g} \quad \mathbf{b}_{a} = \tilde{\mathbf{b}}_{a} + \hat{\mathbf{b}}_{a}$$ $${}_{O}\mathbf{T} = {}_{O}\hat{\mathbf{T}}\exp\left({}_{O}\boldsymbol{\xi}_{\times}\right) \quad \delta\mathbf{s} = \delta\tilde{\mathbf{s}} + \delta\hat{\mathbf{s}} \quad \delta\mathbf{u} = \delta\tilde{\mathbf{u}} + \delta\hat{\mathbf{u}},$$ $$egin{aligned} _I\dot{\hat{\mathbf{R}}}&={}_I\hat{\mathbf{R}}\left({}^i\pmb{\omega}-\hat{\mathbf{b}}_g ight)_{ imes}, & \dot{\hat{\mathbf{b}}}_g&=\mathbf{0}, \ _I\dot{\hat{\mathbf{v}}}&={}_I\hat{\mathbf{R}}\left({}^i\mathbf{a}-\hat{\mathbf{b}}_a ight)+\mathbf{g}, & {}_I\dot{\hat{\mathbf{p}}}&={}_I\hat{\mathbf{v}}, \end{aligned}$$ **Proposition 4.** The nominal dynamics (23) can be integrated in *closed-form* to obtain the predicted mean $\hat{\mathbf{x}}_{k+1}^p$: $$I\hat{\mathbf{R}}_{k+1}^{p} = I\hat{\mathbf{R}}_{k} \exp\left(\tau_{k} ({}^{i}\boldsymbol{\omega}_{k} - \hat{\mathbf{b}}_{g,k})_{\times}\right),$$ $$I\hat{\mathbf{v}}_{k+1}^{p} = I\hat{\mathbf{v}}_{k} + \mathbf{g}\tau_{k} + I\hat{\mathbf{R}}_{k}\mathbf{J}_{L} (\tau_{k} ({}^{i}\boldsymbol{\omega}_{k} - \hat{\mathbf{b}}_{g,k})) ({}^{i}\mathbf{a}_{k} - \hat{\mathbf{b}}_{a,k})\tau_{k},$$ $$I\hat{\mathbf{p}}_{k+1}^{p} = I\hat{\mathbf{p}}_{k} + I\hat{\mathbf{v}}_{k}\tau_{k} + \mathbf{g}\frac{\tau_{k}^{2}}{2} + I\hat{\mathbf{R}}_{k}\mathbf{H}_{L} (\tau_{k} ({}^{i}\boldsymbol{\omega}_{k} - \hat{\mathbf{b}}_{g,k})) ({}^{i}\mathbf{a}_{k} - \hat{\mathbf{b}}_{a,k})\tau_{k}^{2},$$ $$\hat{\mathbf{b}}_{g,k+1}^{p} = \hat{\mathbf{b}}_{g,k}, \qquad \hat{\mathbf{b}}_{a,k+1}^{p} = \hat{\mathbf{b}}_{a,k}, \qquad (25)$$ $$I\hat{\mathbf{T}}_{k}^{p} = \begin{bmatrix} I\hat{\mathbf{R}}_{k} & I\hat{\mathbf{p}}_{k} \\ \mathbf{0}^{\top} & 1 \end{bmatrix}, I\hat{\mathbf{T}}_{k-1}^{p} = I\hat{\mathbf{T}}_{k-1}, \dots, I\hat{\mathbf{T}}_{k-W+1}^{p} = I\hat{\mathbf{T}}_{k-W+1},$$ where $\mathbf{J}_L(\boldsymbol{\omega}) \triangleq \mathbf{I}_3 + \frac{\boldsymbol{\omega}_{\times}}{2!} + \frac{\boldsymbol{\omega}_{\times}^2}{3!} + \dots$ is the left Jacobian of SO(3) and $\mathbf{H}_L(\boldsymbol{\omega}) \triangleq \frac{\mathbf{I}_3}{2!} + \frac{\boldsymbol{\omega}_{\times}}{3!} + \frac{\boldsymbol{\omega}_{\times}^2}{4!} + \dots$ Both $\mathbf{J}_L(\boldsymbol{\omega})$ and $\mathbf{H}_L(\boldsymbol{\omega})$ admit closed-form (Rodrigues) expressions: $$\mathbf{J}_{L}(\boldsymbol{\omega}) = \mathbf{I}_{3} + \frac{1 - \cos\|\boldsymbol{\omega}\|}{\|\boldsymbol{\omega}\|^{2}} \boldsymbol{\omega}_{\times} + \frac{\|\boldsymbol{\omega}\| - \sin\|\boldsymbol{\omega}\|}{\|\boldsymbol{\omega}\|^{3}} \boldsymbol{\omega}_{\times}^{2}$$ (26) $$\mathbf{H}_{L}(\boldsymbol{\omega}) = \frac{1}{2} \mathbf{I}_{3} + \frac{\|\boldsymbol{\omega}\| - \sin\|\boldsymbol{\omega}\|}{\|\boldsymbol{\omega}\|^{3}} \boldsymbol{\omega}_{\times} + \frac{2(\cos\|\boldsymbol{\omega}\| - 1) + \|\boldsymbol{\omega}\|^{2}}{2\|\boldsymbol{\omega}\|^{4}} \boldsymbol{\omega}_{\times}^{2}.$$ # **Prediction Step** Closed-form solutions to the linear time variant (LTV) stochastic differential equation (SDE) from stochastic error dynamics $$I\dot{\hat{f p}} = -\left({}^{i}m{\omega} - \hat{f b}_{g} ight)_{ imes} Im{ heta} - \left(\tilde{f b}_{g} + {f n}_{m{\omega}} ight),$$ $I\dot{\hat{f v}} = -I\hat{f R}\left({}^{i}{f a} - \hat{f b}_{a} ight)_{ imes} Im{ heta} - I\hat{f R}\left(\tilde{f b}_{a} + {f n}_{f a} ight),$ $I\dot{\hat{f p}} = I\tilde{f v}, \qquad \dot{\hat{f b}}_{g} = {f n}_{g}, \qquad \dot{\hat{f b}}_{a} = {f n}_{a}.$ $$_{I}\dot{\tilde{\mathbf{x}}} = \mathbf{F}(t)_{I}\tilde{\mathbf{x}} + {}_{I}\mathbf{n}, \qquad {}_{I}\tilde{\mathbf{x}}(0) \sim \mathcal{N}(\mathbf{0}, {}_{I}\mathbf{\Sigma}_{k})$$ (27) $${}_{I}\boldsymbol{\Sigma}_{k+1}^{p} = \mathbb{E}\left[{}_{I}\tilde{\mathbf{x}}(\tau_{k}){}_{I}\tilde{\mathbf{x}}(\tau_{k})^{\top}\right]$$ $$= \boldsymbol{\Phi}(\tau_{k},0){}_{I}\boldsymbol{\Sigma}_{k}\boldsymbol{\Phi}(\tau_{k},0)^{\top} + \int_{0}^{\tau_{k}} \boldsymbol{\Phi}(\tau_{k},s)\mathbf{Q}\boldsymbol{\Phi}(\tau_{k},s)^{\top}ds$$ (28) **Proposition 5.** The LTV SDE in (27) has a *closed-form* transition matrix: $$\boldsymbol{\Phi}(t,0) = \begin{bmatrix} \exp{(-t\boldsymbol{\omega}_{\times})} & \mathbf{0} & \mathbf{0} & -t\mathbf{J}_{L}\left(-t\boldsymbol{\omega}\right) & \mathbf{0} \\ \boldsymbol{\Phi}_{\mathbf{v}\boldsymbol{\theta}}(t) & \mathbf{I}_{3} & \mathbf{0} & \boldsymbol{\Phi}_{\mathbf{v}\boldsymbol{\omega}}(t) & \boldsymbol{\Phi}_{\mathbf{v}\mathbf{a}}(t) \\ \boldsymbol{\Phi}_{\mathbf{p}\boldsymbol{\theta}}(t) & t\mathbf{I}_{3} & \mathbf{I}_{3} & \boldsymbol{\Phi}_{\mathbf{p}\boldsymbol{\omega}}(t) & \boldsymbol{\Phi}_{\mathbf{p}\mathbf{a}}(t) \\ \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{I}_{3} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{I}_{3} \end{bmatrix}$$ where $\mathbf{w} = {}^{i}\boldsymbol{\omega}_{k} - \hat{\mathbf{b}}_{q,k}$, $\mathbf{a} = {}^{i}\mathbf{a}_{k} - \hat{\mathbf{b}}_{a,k}$ and the blocks are: $$\begin{split} & \Phi_{\mathbf{v}\theta}(t) = -t_{I}\hat{\mathbf{R}}_{k} \left[\mathbf{J}_{L} \left(t\boldsymbol{\omega} \right) \mathbf{a} \right]_{\times} \\ & \Phi_{\mathbf{v}\boldsymbol{\omega}}(t) = {}_{I}\hat{\mathbf{R}}_{k}\Delta(t) \frac{\mathbf{a}_{\times}}{\|\boldsymbol{\omega}\|^{2}} \left(\mathbf{I}_{3} + \frac{\boldsymbol{\omega}_{\times}^{2}}{\|\boldsymbol{\omega}\|^{2}} \right) \\ & + t_{I}\hat{\mathbf{R}}_{k} \left(\frac{\boldsymbol{\omega}\mathbf{a}^{\top}}{\|\boldsymbol{\omega}\|^{2}} \left(\mathbf{J}_{L}(-t\boldsymbol{\omega}) - \mathbf{I}_{3} \right) + \frac{\mathbf{a}^{\top}\boldsymbol{\omega}}{\|\boldsymbol{\omega}\|^{2}} \left(\mathbf{J}_{L}(t\boldsymbol{\omega}) - \mathbf{I}_{3} \right) \right) \\ & \Phi_{\mathbf{v}\mathbf{a}}(t) = -t_{I}\hat{\mathbf{R}}_{k}\mathbf{J}_{L} \left(t\boldsymbol{\omega} \right) \\ & \Phi_{\mathbf{p}\boldsymbol{\theta}}(t) = -t^{2}{}_{I}\hat{\mathbf{R}}_{k} \left[\mathbf{H}_{L} \left(t\boldsymbol{\omega} \right) \mathbf{a} \right]_{\times} \\ & \Phi_{\mathbf{p}\boldsymbol{\omega}}(t) = {}_{I}\hat{\mathbf{R}}_{k} \left(t\mathbf{J}_{L} \left(t\boldsymbol{\omega} \right) - \frac{\boldsymbol{\omega}_{\times}}{\|\boldsymbol{\omega}\|^{2}} \Delta(t) - t\mathbf{I}_{3} \right) \frac{\mathbf{a}_{\times}}{\|\boldsymbol{\omega}\|^{2}} \left(\mathbf{I}_{3} + \frac{\boldsymbol{\omega}_{\times}^{2}}{\|\boldsymbol{\omega}\|^{2}} \right) \\ & + \frac{t^{2}}{2}{}_{I}\hat{\mathbf{R}}_{k} \left(\frac{\boldsymbol{\omega}\mathbf{a}^{\top}}{\|\boldsymbol{\omega}\|^{2}} \left(2\mathbf{H}_{L}(-t\boldsymbol{\omega}) - \mathbf{I}_{3} \right) + \frac{\mathbf{a}^{\top}\boldsymbol{\omega}}{\|\boldsymbol{\omega}\|^{2}} \left(2\mathbf{H}_{L}(t\boldsymbol{\omega}) - \mathbf{I}_{3} \right) \right) \\ & \Phi_{\mathbf{p}\mathbf{a}}(t) = -t^{2}{}_{I}\hat{\mathbf{R}}_{k}\mathbf{H}_{L} \left(t\boldsymbol{\omega} \right) \end{split}$$ ## **Update Step** When an object/landmark track is lost, optimize its state given the current sensor state $$\min_{\ell_m} {}^g oldsymbol{W} \sum_{t,n} \|{}^g oldsymbol{e}(oldsymbol{x_t}, \ell_{oldsymbol{m}}, {}^g oldsymbol{Z}_{t,n})\|^2$$ $$\min_{o_i} s_{oldsymbol{W}} \sum_{t,i,k} \|^s oldsymbol{e}(oldsymbol{x_t}, oldsymbol{o_i}, ^s oldsymbol{Z}_{t,j,k})\|^2 + ^b oldsymbol{w} \sum_{t,i,k} \left\|^b oldsymbol{e}(oldsymbol{x_t}, oldsymbol{o_i}, ^b oldsymbol{Z}_{t,j,k}) ight\|^2 + ^r oldsymbol{w} \|^r oldsymbol{e}(oldsymbol{o_i})\|^2$$ Levenberg-Marquardt with error Jacobians obtained via object state perturbation: $$_{0}m{T}=\exp{(_{m{o}}m{\zeta}_{\mathrm{x}})_{m{o}}\widehat{m{T}}$$ $\deltam{s}=\widetilde{\deltam{s}}+\widehat{\deltam{s}}$ $\deltam{u}=\widetilde{\deltam{u}}+\widehat{\deltam{u}}$ • Eliminate object state from sensor state residual via left-nullspace matrix $$N_i^T e_i pprox N_i^T \hat{e}_i + N_i^T rac{\partial \hat{e}_i}{\partial ilde{x}_{t+1}} ilde{x}_{t+1} + N_i^T rac{\partial \hat{e}_i}{\partial ilde{o}_i} ilde{o}_i + N_i^T n_i \, iggr\} \quad ext{innovation for KF update}$$ #### **Contributions** - We introduce object states in the formulation SLAM, with coarse ellipsoid shape, and fine semantic-keypoint shape - We define residuals relating object states and IMU camera states to inertial measurements, geometric features, object semantic features, and object bounding-box detections - We propose closed-form mean and covariance propagation over the SE(3) pose and velocity manifold of the IMU-camera states # **Evaluation** Object-level map and reprojected object states on KITTI odom 07 Semantic features Bounding boxes are green Semantic keypoints are colored dots Semantic keypoint tracks are colored lines # **Trajectory and object map**Groundtruth trajectory is the green line Estimated trajectory is the yellow line Estimated pose is the axes Pose covariance is the purple ellipsoid Groundtruth objects are blue meshes Estimated objects are colored ellipsoids Semantic keypoints are green dots # **Evaluation** Indoor scene with hand-held VI sensor to map chairs # **Evaluation** Indoor scene with VI sensor on robotic car to map chairs Outdoor scene with hand-held VI sensor to map chairs, bikes, cars Outdoor scene with VI sensor on robotic car to map barrels ## Quantitative results comparable with SOTA TABLE II: Object Detection and Pose Estimation on the KITTI Object Sequences | Metric | KITTI Sequence \rightarrow | 22 | 23 | 36 | 39 | 61 | 64 | 95 | 96 | 117 | Mean | |------------------|--|-----------------------------|-----------------------------|-----------------------------|-----------------------------|----------------------|-----------------------------|-----------------------------|----------------------|-----------------------------|-----------------------------| | 3D IoU | SingleView [90]
CubeSLAM [61]
OrcVIO | 0.52
0.58
0.51 | 0.32
0.35
0.55 | 0.50
0.54
0.53 | 0.54
0.59
0.55 | 0.54
0.50
0.53 | 0.43
0.48
0.46 | 0.40
0.52
0.29 | 0.26
0.29
0.31 | 0.25
0.35
0.23 | 0.42
0.47
0.44 | | Trans. error (%) | CubeSLAM [61]
OrcVIO | 1.68
1.68 | 1.72
1.50 | 2.93 2.95 | 1.61
1.44 | 1.24
1.22 | 0.93 1.02 | 1.49
1.49 | 1.81
1.59 | 2.21
1.92 | 1.74
1.65 | TABLE IV: Trajectory RMSE (m) on the KITTI Odometry Sequences | KITTI Sequence \rightarrow | 00 | 02 | 04 | 05 | 06 | 07 | 08 | 09 | 10 | Mean | |------------------------------|------|------|------|------|------|------|------|------|------|------| | Object BA [58] | 73.4 | 55.5 | 10.7 | 50.8 | 73.1 | 47.1 | 72.2 | 31.2 | 53.5 | 51.9 | | CubeSLAM [61] | 13.9 | 26.2 | 1.1 | 4.8 | 7.0 | 2.7 | 10.7 | 10.7 | 8.4 | 9.5 | | OrcVIO | 10.9 | 18.9 | 0.8 | 5.5 | 4.5 | 2.5 | 14.1 | 6.6 | 5.3 | 7.7 | # Stereo VIO trajectory accuracy comparable with SOTA | Dataset | VINS | S-MSCKF | ORB SLAM | SVO2 | Stereo OrcVIO | |-----------------|----------|------------|----------|----------|---------------| | Sensor | Mono+IMU | Stereo+IMU | Stereo | Stereo | Stereo+IMU | | MH_01_easy | 0.156025 | X | 0.037896 | 0.111732 | 0.231 | | MH_02_easy | 0.178418 | 0.152133 | 0.044086 | Х | 0.416 | | MH_03_medium | 0.194874 | 0.289593 | 0.040688 | 0.360784 | 0.279 | | MH_04_difficult | 0.346300 | 0.210353 | 0.088795 | 2.891935 | 0.320 | | MH_05_difficult | 0.302346 | 0.293128 | 0.067401 | 1.199866 | 0.453 | | V1_01_easy | 0.088925 | 0.070955 | 0.087481 | 0.061025 | 0.056 | | V1_02_medium | 0.110438 | 0.126732 | 0.079843 | 0.081536 | 0.168 | | V1_03_difficult | 0.187195 | 0.203363 | 0.284315 | 0.248401 | 0.203 | | V2_01_easy | 0.086263 | 0.065962 | 0.077287 | 0.076514 | 0.073 | | V2_02_medium | 0.157444 | 0.175961 | 0.117782 | 0.204471 | 0.208 | | V2_03_difficult | 0.277569 | х | x | х | Х | # **Open-sourced OrcVIO** | | Python | C++ | ROS support | Mapping | Requires | Note | |------------------|--------|-----|-------------|--------------------|---|----------------------------------| | OrcVIO | | ✓ | ✓ | 1 | Mono imgs
Bounding boxes
Semantic kps | Original | | OrcVIO Lite | | ✓ | ✓ | ✓ | Mono imgs
Bounding boxes | Simplified mapper | | OrcVIO
Stereo | 1 | ✓ | ✓ | External
mapper | Stereo imgs
Bounding boxes | More robust
VIO | | External mapper | | | | | Mono imgs
Bounding boxes
Camera poses | Compatible
with all
OrcVIO | https://github.com/shanmo?tab=repositories #### **SDF** ## The surface can be implicitly represented by the zero-level set The fine shape of a rigid body is represented as $\{\mathbf{x} \in \mathbb{R}^3 \mid f(\mathbf{x}) \leq 0\}$ using the *signed distance field* of a set $\mathcal{S} \subset \mathbb{R}^3$: $$f(\mathbf{x}) = \begin{cases} -d(\mathbf{x}, \partial \mathcal{S}), & \mathbf{x} \in \mathcal{S}, \\ d(\mathbf{x}, \partial \mathcal{S}), & \mathbf{x} \notin \mathcal{S}, \end{cases}$$ (4) where $d(\mathbf{x}, \partial \mathcal{S})$ denotes the Euclidean distance from a point $\mathbf{x} \in \mathbb{R}^3$ to the boundary $\partial \mathcal{S}$ of \mathcal{S} . #### Review - DeepSDF directly regresses SDF - Latent vectors are optimized along with the decoder weights through standard backpropagation - During inference, decoder weights are fixed, and an optimal latent vector is estimated # Latent space traversal #### **DualSDF** - DualSDF expresses shapes at two levels of granularity - Fine level captures fine details - Coarse level represents an abstracted proxy shape using simple and semantically consistent shape primitives [1] DualSDF: Semantic Shape Manipulation using a Two-Level Representation #### **FroDO** - FroDO uses joint shape embedding - sparse point-based (efficiency) - dense surface (expressiveness) object shape representations Figure 2: Given a sequence of calibrated, and localized RGB images, FroDO detects objects and infers their shape code and per-frame poses in a coarse-to-fine manner. We demonstrate FroDO on challenging sequences from real-world datasets that contain a single object (Redwood-OS) or multiple objects (ScanNet). #### **Motivation** - Right balance between faithful object reconstruction and a compact object representation - A **bi-level object model** with coarse and fine levels, to enable joint optimization of object pose and shape. The two levels are coupled via a shared latent space - Coarse-level uses a primitive shape for robust pose and scale initialization - Fine-level uses SDF residual directly to allow accurate shape modeling - A cost function to measure the mismatch between the bi-level object model and the segmented RGB-D observations in the world frame #### **Problem Formulation** Overall cost = coarse shape error + fine shape error + regularization $$e(\mathbf{T}, \delta \mathbf{z}, \boldsymbol{\theta}, \boldsymbol{\phi}; \{\mathcal{X}_k(\mathbf{p})\}) \triangleq \alpha e_r(\delta \mathbf{z})$$ $$+ \sum_{k=1}^K \sum_{\mathbf{p} \in \Omega_k^2} \sum_{(\mathbf{x}, d) \in \mathcal{X}_k(\mathbf{p})} \beta e_{\boldsymbol{\theta}}(\mathbf{x}, d, \mathbf{T}, \delta \mathbf{z}) + \gamma e_{\boldsymbol{\phi}}(\mathbf{x}, d, \mathbf{T}, \delta \mathbf{z}),$$ (6) Training cost $$\min_{\{\delta \mathbf{z}_n\}, \boldsymbol{\theta}, \boldsymbol{\phi}} \sum_{n} e(\mathbf{I}_4, \delta \mathbf{z}_n, \boldsymbol{\theta}, \boldsymbol{\phi}; \{\mathcal{X}_{n,k}(\mathbf{p})\}). \tag{7}$$ Testing cost $$\min_{\mathbf{T}, \delta \mathbf{z}} e(\mathbf{T}, \delta \mathbf{z}, \boldsymbol{\theta}^*, \boldsymbol{\phi}^*; \{\mathcal{X}_k(\mathbf{p})\}). \tag{8}$$ #### **Overview** • Point cloud & initial pose (green) obtained from RGB-D detections with known samera poses (blue) #### **Overview** • A bi-level category shape description, consisting of a latent shape code, a coarse shape decoder, and a fine shape decoder (orange), is trained offline using a dataset of mesh models #### **Overview** Given the observed point cloud, the pose and shape deformation of the newly seen instance are optimized jointly online, achieving shape reconstruction in the global frame (red) ## **Object Pose Initialization** Reconstruct ellipsoids from ellipses for initial object pose $$egin{aligned} eta_{if}^{G_if} &= \mathrm{P}_f \mathrm{Q}_i^* \mathrm{P}_f^{ op} & eta_{if} \mathbf{c}_{if}^* &= \mathbf{G}_f \mathbf{v}_i^* \ \mathrm{G}_f &= \mathrm{D}(\mathrm{P} \otimes \mathrm{P}) \mathrm{E} \end{aligned}$$ $$egin{aligned} \mathbf{M}_i \mathbf{w}_i &= \mathbf{0}_{6F} \ & \mathbf{M}_i = egin{bmatrix} rac{G_1 & -\mathbf{c}_{i1}^* & \mathbf{0}_6 & \mathbf{0}_6 & \dots & \mathbf{0}_6 \ G_2 & \mathbf{0}_6 & -\mathbf{c}_{i2}^* & \mathbf{0}_6 & \dots & \mathbf{0}_6 \ G_3 & \mathbf{0}_6 & \mathbf{0}_6 & -\mathbf{c}_{i3}^* & \dots & \mathbf{0}_6 \ dots & \mathbf{0}_6 & \mathbf{0}_6 & 0 & \ddots & \mathbf{0}_6 \ G_F & \mathbf{0}_6 & \mathbf{0}_6 & \mathbf{0}_6 & \dots & -\mathbf{c}_{iF}^* \end{bmatrix} & \mathbf{w}_i = egin{bmatrix} \mathbf{v}_i^* \ eta_i \end{bmatrix} \ & \mathbf{\tilde{w}}_i = rg\min_{\mathbf{w}} ig\| \mathbf{\tilde{M}}_i \mathbf{w} ig\|_2^2 & \|\mathbf{w}\|_2^2 = 1 \end{aligned}$$ ## **Object Pose & Shape Optimization** - Training phase: optimize parameters of object class using offline data, from known meshes - **Testing phase**: optimize the pose T and shape deformation δz of a previously unseen instance from the same category using online distance data from an RGB-D camera - Residuals relate both the **object pose** and shape to the SDF residual to enable joint optimization - Solve joint object pose and shape optimization via gradient descent $$e_{\theta}(\mathbf{x}, d, \mathbf{T}, \delta \mathbf{z}) \triangleq \rho(sf_{\theta}(\mathbf{PT}\underline{\mathbf{x}}; \mathbf{z} + \delta \mathbf{z}) - d).$$ (9) $$e_{\phi}(\mathbf{x}, d, \mathbf{T}, \delta \mathbf{z}) \triangleq \rho(sh(\mathbf{PT}\underline{\mathbf{x}}, g_{\phi}(\mathbf{z} + \delta \mathbf{z})) - d).$$ (12) - ELLIPSDF decoder model trained on synthetic CAD models in **ShapeNet**, visualization shows: - RGB image, depth image, instance segmentation (yellow), fitted ellipse (red) - ELLIPSDF decoder model trained on synthetic CAD models in **ShapeNet**, visualization shows: - Mean shape and ellipsoid with initial pose - ELLIPSDF decoder model trained on synthetic CAD models in **ShapeNet**, visualization shows: - Optimized fine-level and coarse-level shapes with optimized pose • Optimization step improves the scale and shape estimates notably on **ScanNet**, e.g. by transforming the four-leg mean shape into an armchair Reconstruction for a scene with multiple objects - Large-scale evaluation on ScanNet - Optimization step improves pose estimation accuracy - Coarse+fine model outperforms fine-model-only for shape estimation - ELLIPSDF is comparable with SOTA #### **Quantitative results for pose estimation on ScanNet:** | Scan2CAD | Vid2CAD | ELLIPSDF (init) | ELLIPSDF (opt) | |----------|---------|-----------------|----------------| | 31.7 | 38.3 | 31.5 | 39.6 | #### **Quantitative results for shape evlaution on ScanNet:** | Method | cabinet | chair | display | table | avg. | |------------------------|---------|-------|---------|-------|------| | # intances | 132 | 820 | 209 | 146 | 327 | | ELLIPSDF (fine) | 88.4 | 88.3 | 90.6 | 76.2 | 85.9 | | ELLIPSDF (coarse+fine) | 91.0 | 90.6 | 96.9 | 77.3 | 89.0 | #### **Comparison of 3D detection results on ScanNet:** | mAP @ IoU=0.5 | Chair | Table | Display | |------------------------|-------|-------|---------| | FroDO | 0.32 | 0.06 | 0.04 | | MOLTR | 0.39 | 0.06 | 0.10 | | ELLIPSDF (fine) | 0.42 | 0.26 | 0.25 | | ELLIPSDF (coarse+fine) | 0.43 | 0.27 | 0.31 | [1] Frodo: From detections to 3d objects [2] MOLTR: Multiple Object Localization, Tracking and Reconstruction From Monocular RGB Videos ## Timing - Init is the pose initialization for 100 views - Latent Code Opt and SIM(3) Opt are a single SGD step with respect to δz and T respectively using 10000 points as batch size - SDF Decoding and Meshing are optional steps that generate SDF predictions over 2563 points and apply Marching Cubes to generate a mesh Table 4. ELLIPSDF timing breakdown (sec) | Init | Latent Code Opt | SIM(3) Opt | SDF Decoding | Meshing | |------|-----------------|------------|--------------|---------| | 0.04 | 0.13 | 0.58 | 1.38 | 2.34 | #### **Contributions** - To summarize, the main contribution of this work is the design of - a bi-level object model with coarse and fine levels, enabling joint optimization of object pose and shape - a cost function to measure the mismatch between the bi-level object model and the segmented RGB-D observations in the world frame ## **Future Directions** Data association for loop closure for cars and quadrotors ## **Future Directions** Dynamic object tracking ## **Future Direction** Vision only object shape optimization