

ELLIPSDF: Joint Object Pose and Shape Optimization with a Bi-level Ellipsoid and Signed Distance Function Description

Mo Shan, Qiaojun Feng, You-Yi Jau, Nikolay Atanasov University of California San Diego

Motivations & Contributions

Motivations:

- Build maps that offer geometric and semantic information useful and understandable for humans, allowing specification of tasks in terms of object entities.
- Strike the right balance between a faithful object reconstruction and a compact object representation.

Contributions:

- A bi-level object model with coarse and fine levels, to enable joint optimization of object pose and shape. The two levels are coupled via a shared latent space.
- Coarse-level uses a primitive shape for robust pose and scale initialization.
- Fine-level uses SDF residual directly to allow accurate shape modeling.
- A cost function to measure the mismatch between the bi-level object model and the segmented RGB-D observations in the world frame.

Overview: We propose ELLIPSDF, an expressive yet compact model of object pose and shape, and an associated optimization algorithm to infer an object-level map from multi-view RGB-D camera observations.

Problem Formulation

Definitions:

- An object class is a tuple $\mathbf{c} \triangleq (\nu, \mathbf{z}, f_{\theta}, g_{\phi})$
- $-\nu\in\mathbb{N}$ is the class identity, e.g., chair, table, sofa.
- $-z \in \mathbb{R}^d$ is latent code encoding average shape.
- Shape is represented in a canonical coordinate frame at two levels of granularity: coarse and fine.
- Coarse shape is specified by an ellipsoid \mathcal{E}_u with semi-axis lengths $u = g_{\phi}(z)$ decoded from the latent code z via a function g_{ϕ} with parameters ϕ .
- Fine shape is specified by the **signed distance** $f_{\theta}(x, z)$ from any $x \in \mathbb{R}^3$ to the average shape surface, decoded from the latent code z via a function f_{θ} with parameters θ .
- An *object instance* of class c is a tuple $i \triangleq (T, \delta z)$.
- $T \in SIM(3)$ specifies the transformation from the global frame to the object instance frame.
- $\delta z \in \mathbb{R}^d$ is a deformation of the latent code z, specifying the average shape of class c.

Error Functions:

- e_{ϕ} measures the discrepancy between a distance-labelled point $(\boldsymbol{x},d) \in \mathcal{X}_k(\boldsymbol{p})$ observed close to surface and the coarse shape $\mathcal{E}_{\boldsymbol{u}}$ provided by $\boldsymbol{u} = g_{\phi}(\boldsymbol{z})$.
- e_{θ} is used for the difference between (x, d) and the SDF value $f_{\theta}(x, z)$ predicted by the fine shape model.

Object Pose and Shape Optimization

- Training phase: optimize parameters z, θ , ϕ of object class using offline data, from instances with known meshes.
- **Testing phase**: optimize the pose T and shape deformation δz of a previously unseen instance from the same category using online distance data from an RGB-D camera.

Training an ELLIPSDF Model:

• Learn latent shape code shared by coarse shape decoder g_{ϕ} and fine shape decoder f_{θ} .

Joint Pose and Shape Optimization:

Given initial object transformation and shape deformation, solve joint object pose and shape optimization via gradient descent:

$$egin{aligned} oldsymbol{T}^{i+1} & riangleq \exp\left(-\eta_1 rac{\partial e(oldsymbol{T}, \delta oldsymbol{z}, oldsymbol{ heta}^*, oldsymbol{\phi}^*, oldsymbol{\phi}^*; \{\mathcal{X}_k(oldsymbol{p})\})}{\partial oldsymbol{x}i} igg) oldsymbol{T}^i, \ \delta oldsymbol{z}^{i+1} & riangleq \delta oldsymbol{z}^i - \eta_2 \left(rac{\partial e(oldsymbol{T}, \delta oldsymbol{z}, oldsymbol{ heta}^*, oldsymbol{\phi}^*, oldsymbol{\phi}^*; \{\mathcal{X}_k(oldsymbol{p})\})}{\partial \delta oldsymbol{z}}
ight). \end{aligned}$$

Experiments & Results

• We evaluate ELLIPSDF on the **ScanNet dataset**, which provides 3D scans captured by a RGB-D sensor of indoor scenes with chairs, tables, displays, etc.

Visualizations of Intermediate Results:

- The ELLIPSDF decoder model is trained on synthetic CAD models from **ShapeNet**.
- From left to right:
- RGB image, depth image, instance segmentation (yellow), fitted ellipse (red) for a chair.
- Mean shape and ellipsoid with initial pose.
- Optimized fine-level and coarse-level shapes with optimized pose.
- Optimization step improves the scale and shape estimates notably, e.g. by transforming the four-leg mean shape into an armchair.

Intermediate ELLIPSDF stages.

Qualitative Results on a larger scale:

Column a): Ground-truth scene in ScanNet Sequences. Column b): The ellipsoids (black for chair, red for sofa, blue for monitor, brown for table) are the initialized objects. Column c): Reconstructed meshes using ELLIPSDF.

Quantitative results for pose estimation on ScanNet:

Scan2CAD	Vid2CAD	ELLIPSDF (init)	ELLIPSDF (opt)
31.7	38.3	31.5	39.6

Quantitative results for shape evlaution on ScanNet:

Method	cabinet	chair	display	table	avg.
# intances	132	820	209	146	327
ELLIPSDF (fine)	88.4	88.3	90.6	76.2	85.9
ELLIPSDF (coarse+fine)	91.0	90.6	96.9	77.3	89.0

Comparison of 3D detection results on ScanNet:

mAP @ IoU=0.5	Chair	Table	Display
FroDO	0.32	0.06	0.04
MOLTR	0.39	0.06	0.10
ELLIPSDF (fine)	0.42	0.26	0.25
ELLIPSDF (coarse+fine)	0.43	0.27	0.31