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Abstract
Keypoint detection using convolutional neural networks (CNNs) requires a large amount of annotations that

are time consuming and labor intensive. In this work, it is shown that CNNs could merely rely on class labels to
categorize images and locate the keypoints simultaneously. Specifically, keypoints are detected in a multiscale
framework based on the relevance of features and high activations. The performance of the proposed pipeline
is analyzed qualitatively.

Motivation
1. Manual keypoint annotation process is quite time consuming and labor intensive.
2. The labeling is subjective and the position of the keypoints are not well defined.
3. Hard to ensure that the keypoints are semantically consistent for varied instances in a class.
4. A question arises naturally: is it really necessary to label each keypoint for CNNs?

Overview

Figure 1: Overview of the proposed approach.
In this work, it is found that keypoint annotations may not be necessary, as class labels could

provide weak supervision that is sufficient for CNNs to figure out the locations of the important
features in the image that are vital for accurate classification. An overview is shown in Fig. 1.

Coarse-scale keypoint detection
At coarse scale, the contribution of each patch in the input image for object classification is ana-
lyzed by covering it and examining the change in the confidence of class prediction similar to [2].
If the confidence of the correct class drops dramatically due to the occlusion of a patch, then the
probability of the patch containing a discriminative feature is very high.

The network is denoted by a mapping f : RN 7→ RC , x ∈ RN , y ∈ RC , where x in an image
of N pixels, and y = [y1, ..., yC ]

T denotes the classification score of C classes, with yi being
the probability of the i th class. The pixels inside an occluder b of image x are replaced by a
vector g, and this occlusion function is denoted by hg. Hence the change in classification score
is δf (x, b) = max(f (x) − f (hg(x, b)), 0). To avoid creating edges, random colors are used as g
instead of mono color. Since only the class with maximum probability is considered, the decrease
of score is d(x, b) = δf (x, b)

T IC , where IC ∈ NC is an indicator vector whose elements are zero
except at the predicted class c.

Fine-scale keypoint detection
For the fine scale, guided backpropagation [1] is performed on the unit that has maximum activa-
tion, whose results reflect the effect of the input image at pixel level. In other words, guided back-
propagation from the softmax layer reveals which pixel positively influences the class prediction,
by maximizing the probability of the predicted class while minimizing that of other classes.

During back-propagation, the gradient of the predicted class with respect to the input is com-
puted, which locates the pixel where the least modification has to be made in order to affect
the prediction the most. The activation at layer l + 1 could be obtained from the activation at
layer l through a ReLU unit as fil+1 = ReLU(fi

l) = max(fi
l, 0). The back-propagation is

Ri
l = (fi

l > 0) · Ril+1, where Ril+1 = ∂f out

∂fi
l+1. For guided back-propagation, not only the input

is positive, but also the error, i.e. Ril = (fi
l > 0) · (Ril+1 > 0) · Ril+1. In this way the error is

guided both by the input as well as the error.
The coarse scale and fine scale are combined linearly, where sigmoid functions are used to trans-

form the heatmaps into log-likelihood keypoint distributions. This values is the confidence score.

Post-processing
After the log-likelihood map is obtained, Non Maximum Suppression is performed to prune the
nearby keypoints. For each keypoint, the subpixel coordinates are determined using the F örstner
operator by solving a least squares solution for Ax = b, i.e. x̂ = A−1b, where x, x̂ are the original
keypoints and keypoints with sub-pixel accuracy, w is the window about the pixel, whose size is
very small, and Ix, Iy are the gradient images in the x and y direction. A, b are given by
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Results
VGG Net is used with a patch size of 16× 16 and a stride size of 8 in all the experiments.

Keypoint prediction

Figure 2: Keypoints and contribution heatmaps. First column: input images. Second column: heatmaps that indicate
the importance of different patches for classifying the image using VGG Net-E. The warmer the color, the larger the
change in activations when the patch is covered. Third column: heatmaps of guided backpropagation. The warmer
the color, the larger the gradient. Fourth column: detected keypoints using the proposed framework marked in red.
Fifth column: keypoints annotations marked in green.

1. Only the top 40% based on confidence score is kept.

2. As can be seen from Fig. 2, the most important patches are usually those centered around the
keypoints, such as those near the rear view mirrors, head lights as well as the wheels, which are
semantically consistent.

3. The rear view mirrors as well as car logos are always highlighted in the gradient images from
guided back-propagation, which confirms the close relevance of keypoints and high activations.

Salient feature prediction

Figure 3: Salient feature for each type of cars.

1. A histogram could be built based on the occurrence of the detected landmarks for each car, and
the ones that appear most frequently are reported in Fig. 3.

2. The most frequently detected landmarks for all the cars is 52, which is located at the right part
of the bonnet. This indicates that the bonnet is important for CNNs to make classifications.

Key insights

1. Keypoint detection using CNNs could be achieved via weak supervision, using classification as
an auxiliary task

2. For future work, viewpoint annotations may be a more effective supervision than class labels.
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