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SLAM

• Simultaneous Localization And Mapping (SLAM): a model of
the environment (the map), and the estimation of the state of
the robot moving within it (C. Cadena et al., 2016).

Figure: SLAM framework.
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Factor graph
• SLAM as a factor graph

Figure: Factor graph. Blue circles: robot poses, green circles: landmark
positions, red circle: variable of intrinsic parameters (K). u: odometry
constraints, v: camera observations, c: loop closures, p: prior factors.
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Motivation
Object-level semantics are important for

• improving performance of feature tracking

• reducing drift via loop closure

• obtaining compressed maps of objects for subsequent tasks

Figure: An object map.
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Objective
A robot equipped with an IMU and RGB camera, localize the
robot using visual-inertial odometry (VIO), and map the objects
composed of semantic landmarks in the scene using:

• inertial observations: linear acceleration and angular velocity

• geometric measurements from geometric landmarks

• semantic measurements from keypoints on objects
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State of the Art

• Traditional VIO, SLAM approaches such as ORB SLAM
(Mur-Artal et al., 2017), DSO (J. Engel et al., 2016) rely on
geometric features, eg ORB, SIFT, but overlook objects

• Learning-based approaches that use convolutional neural
networks (CNNs) only regress camera pose but do not
produce meaningful maps

• Initial attempts on object-level SLAM often use iterative
optimization as well as complicated object CAD models

6 / 36



Contribution

We exploits the object semantics to

• obtain uncertainty estimates for the semantic feature locations

• achieve probabilistic tracking of composite semantic features,
i.e., at the object level

• exploit object structure constraints (e.g., the wheels of a car
should not be very close or far away to each other) to execute
an accurate estimate
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Objects

• Objects in the environment O , {(oi , ci )}No
i=1

• Object of class ci ∈ Co defined by Ns(ci ) semantic keypoints.

• There also exits the pairwise category-specific constraint
arising from the shape prior
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Problem formulation

Given measurements {izt , gzt , czt , szt , bzt}Tt=1, determine the
sensor trajectory X and the object states O that maximize the
measurement likelihood:

max
O,X

T∑
t=1

log(p(izt |X )p(gzt |X )p(czt ,
bzt ,

szt |O,X )) (1)

The likelihood terms above can be defined as Gaussian density
functions. Variances are determined by the measurement noise.
Means are determined by the dynamic equations of motion over
the SE (3) Lie group and the camera perspective model.
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Front-end

• We use a stacked hourglass convolutional network to extract
mid-level semantic features and their uncertainties, used for
the probabilistic tracking of composite semantic features
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Keypoint detection
• StarMap produces heatmap for all keypoints.
• Corresponding features as 3D locations in the canonical object

view (CanViewFeature)
• Augmented with an additional depth channel (DepthMap) to

lift the 2D keypoints to 3D

Figure: Starmap.
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MC dropout

Figure: Starmap.
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MC dropout

The Monte Carlo estimate is named MC dropout, and defined as in
Eq. 2

ŷmc =
1

B

B∑
i=1

ŷi

η̂mc =
1

B

B∑
i=1

(ŷi − ŷ)2

(2)

MC dropout approximately integrates over the models weights and
can be interpreted as a Bayesian approximation of a Gaussian
process (Y. Gal, 2016).
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Object-level tracking

• Use Kalman Filter to fuse the detection and tracking:
KanadeLucasTomasi (KLT) feature tracker for prediction and
keypoint detection as update.

• The state for object i at time t is

ai
t =

(
xbt y1t ... y

Nkp
t

)
(3)

where xbt , (bx
1
t , bẋ

1
t , by

1
t , bẏ

1
t , bx

2
t , bẋ

2
t , by

2
t , bẏ

2
t )

contains the coordinates of the object bounding box and their
velocities, and yjt , (kxt , k ẋt , kyt , k ẏt), j ∈ 1...Nkp

represents the coordinates and velocities of semantic
keypoints.

• The tracker jointly tracks the bounding box and all the Nkp

semantic keypoints on each car.
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Notation

• We denote the global frame by {G}, the IMU frame by {I},
and the camera frame by {C}.

• The transformation from {I} to {C} is specified by a
translation C

I p ∈ R3 and unit quaternion C
I q using a

left-handed JPL convention

• Alternatively via a transformation matrix:

C
I T ,

(
C
I R C

I p
0 1

)
∈ SE (3), (4)
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Back-end

• EKF prediction:

x̂k|k−1 = f
(
x̂k−1|k−1,uk

)
Pk|k−1 = F kPk−1|k−1F>k + Qk

• EKF update:

ỹk = zk − h
(
x̂k|k−1

)
Sk = HkPk|k−1H>k + Rk

K k = Pk|k−1H>k S−1k

x̂k|k = x̂k|k−1 + K k ỹk

Pk|k = (I −K kHk) Pk|k−1

• where
F k = ∂f

∂x

∣∣
x̂k−1|k−1,uk

Hk = ∂h
∂x

∣∣
x̂k|k−1
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VIO background

• The state of the IMU is defined as

Ix ,
(
I q̄ bg Iv ba Ip

)
∈ R16, (5)

• Our objective: estimate the true state Ix with an estimate I x̂:

I x̂ ,
(
I ˆ̄q b̂g I v̂ b̂a I p̂

)
∈ R16. (6)

• The IMU error state is:

I x̃ ,
(
I
˜̄θ b̃g I ṽ b̃a I p̃

)
∈ R15. (7)

• I
˜̄θ is the angle axis representation of I

˜̄q, and ˜̄q ' [12
˜̄θ> 1]>
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State augmentation

• Keep a history of the camera poses of length W + 1. The
camera state and error state are:

Cx , (C q̄, Cp), C x̃ , (C
˜̄θ, C p̃) ∈ R6(W+1). (8)

• The complete state and error state at time t are:

xt ,
(
Ixt Cxt−W :t

)
, x̃t ,

(
I x̃t C x̃t−W :t

)
. (9)
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Prediction

• We can discretize the state estimate dynamics to obtain the
prediction step for the IMU state mean

• Linearized continuous-time IMU error state dynamics satisfy:

I
˙̃x = F(t)I x̃ + G(t)nI (10)

• The propagated covariance of the IMU state is

PIIt+1|t = ΦtPIIt|tΦt + Qt (11)

• where Q = E
[
nIn
>
I

]
is continuous noise covariance

Φt =Φ(t, t + 1) = exp(

∫ t

t+1
F(τ))dτ

Qt =

∫ t+1

t
Φ (t + 1, τ) GQGΦ (t + 1, τ)> dτ
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Prediction

• The covariance matrix after augmentation with a new camera
state is

Pt+1|t =

(
I15+6(W+1)

Jt

)
Pt+1|t

(
I15+6(W+1)

Jt

)>
(12)

• We obtain the Gaussian pdf p(izt | X ) in (1)
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EKF vs MSCKF

• EKF: Many features constrain one state.

• MSCKF: One feature constrains many states.

Figure: Comparison of EKF, MSCKF.
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Update

• The measurement model relating a landmark ` ∈ L to its
observation zt in camera frame {Ct} is:

zt = π
(
Ct

R>(`− Ctp)
)

+ nt (13)

• The estimate g ˆ̀
j is used to define a residual rj via first-order

Taylor series linearization of gz jt−W :t based on (13):

rj = gzjt−W :t −
g ẑjt−W :t ≈ Hj

x x̃ + Hj
`
g ˜̀

j + nj (14)

• MSCKF update, p(gzt | X ) in (1):

rjo = A>rj ≈ A>Hj
x x̃ + A>nj = Hj

o x̃ + nj
o . (15)
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Constrained filtering

• MSCKF with Persistent Object States

xt =
(
I x̃t C x̃t−W :t C1

`∨1 ... Ck
`∨k
)

(16)

• The original measurement model in EKF SLAM as in Eq. 13 is

z = Hxt + n

where xt is the state vector defined in eq. 16. The
measurement model could be augmented to[

z
d

]
=

[
H
D

]
xt +

[
n
nc

]
(17)

where the constraint is enforced as Dxt + nc = d, and nc is
noise with covariance Σc .
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Constrained filtering

• Landmarks annotations `p ∼ N (µp,Σp), `q ∼ N (µq,Σq)

• The Euclidean distance d = ||`p − `q||2, where
∆` = `p − `q ∼ N (µp − µq ,Σp + Σq).

• Covariance of d is A(Σp + Σq)A>, where A is the Jacobian
of the L2 norm.

Figure: Pairwise constraints.
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Constrained filtering

• Constrained filtering could fuse all available sources of
information (S. Tully et al., 2012)

Figure: Posterior with equalities and inequalities constraints.
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Quantitative Comparison
Enforcing constraints could keep the points close to groundtruth
with large measurement noise

Figure: Left: 640×480 image, birdeye view. Right: RMSE comparison
between Hybrid VIO and OrcVIO in Gazebo Simulation.
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Qualitative evaluation

• Gazebo simulation using real-world IMU data

• Reconstruction for 22 cars

• Drift in Z is large due to insufficient movement
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Qualitative evaluation

• Semantic keypoint detection using StarMap. Upper row:
successes. Lower row: failures.
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Qualitative evaluation

• Semantic feature detection on real-world dataset
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Qualitative evaluation
Reconstruction snapshot on real-world dataset

Figure: Visulization of reconstruction.
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Qualitative evaluation

• Birds eye view of reconstruction

• Both the precision and recall for the reconstruction have to be
improved for real-world data

• Orange path is groundtruth trajectory, purple path is ours

• Red bounding boxes are groundtruth car positions Green
wireframes are results from OrcVIO

Figure: Visulization of reconstruction.
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Weaknesses

• We use triangulation and LevenbergMarquardt to obtain
initial positions

• However, triangulation requires a sufficient baseline

• When baseline is small, depth estimation is inaccurate and
landmarks will be pruned as outliers

• For some inliers depth is not accurate either which lead to
incorrect object pose
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Conclusion

• We present OrcVIO, which incorporates object structures for
constrained state estimation

• The key insight is that there are objects in the scene and their
keypoints are not independent

• The advantages include a more accurate estimation structure
and an object map

• However, there is a lack of an object-level prior to restrict the
depth estimation in triangulation and LM
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Future work

• Shape-Aware Adjustment: given an initialization, use
planarity and symmetry, etc to improve reconstruction

• QuadricSLAM (L. Nicholson et al., 2018) uses ellipsoids,
CubeSLAM (S. Yang, 2019) uses cuboids. We will also explore
how to use geometric shapes to help improve depth estimation

Figure: A quote from a painter.
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Initial results
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